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Note 

Chebyshev Series Solution of the 
Controlled Duffing Oscillator 

1. INTRODUCTION 

In the last decennium, , various new computational techniques involving 
mathematical programming methods and the use of modern digital computers have 
been established especially for applications in optimal systems control [l-3]. Alter- 
native techniques for the dynamic programming method [4] and Pontryagin’s 
maximum principle method [5], the two most adequate techniques for solving optimal 
control problems, have been proposed. Recently, special attention has been devoted to 
the study of the controlled Duffmg oscillator which is known to describe many 
important oscillating phenomena in nonlinear engineering systems [6, 71. 

The aim of this paper is to introduce a direct computational technique to solve the 
controlled Dufting oscillator by taking into account the important advantages of the 
use of the Chebyshev polynomials in numerical analysis with regard to minimax prin- 
ciples and least squares techniques [8]. The method is based on the series expansion 
of the state function and the control strategy in Chebyshev polynomials having 
undetermined coefftcients. One of the major advantages which the use of the 
Chebyshev polynomials provides is that the differential and integral expressions, 
which occur in the algorithm when approximating the given dynamical system, the 
boundary conditions, and the performance index, are readily transformed into simple 
algebraic expressions in the unknown coefftcients. 

The method of constrained extremum is applied, which consists of introducing 
some unknown Lagrange multipliers in conjunction with the constraint equations 
which are derived from the approached dynamical system and the boundary 
conditions. The controlled linear oscillator is investigated first in Sections 2 and 3. 
The Chebyshev approximations of high order are obtained by solving a linear system 
and are found to agree quite well with the exact solution which is available from 
Pontryagin’s maximum principle method. Section 4 is devoted to the study of the 
controlled Dufftng oscillator in Chebyshev series for which the determining equations 
for the unknowns are nonlinear algebraic equations. These equations are then solved 
by the generalized Newton-Raphson iterative method using some of the previous 
results for the controlled linear oscillator as starting values needed to initiate the 
iterative procedure. 
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The results presented here are an extension to optimal control problems of the 
work of Urabe [9] and Van Dooren [ 10-141, among others, involving the use of 
orthogonal polynomials in the numerical computation of solutions to multipoint 
boundary value problems for ordinary differential equations. 

2. THE CONTROLLED LINEAR OSCILLATOR 

Consider the optimum control of a linear oscillator governed by the differential 
equation 

~+w2x=u, (2.1) 

in which a dot (.) means differentiation with respect to T, where -T < T < 0 and T is 
specified. Equation (2.1) is equivalent to the dynamic state equations 

1, =x2, J, = --0*x, + u. (2.2) 

One wishes to control the state of this plant between the specified values 
x,(-T) =x10, x*(-T) =x20, and x,(O) = 0, x,(O) = 0, steering the state to the origin 
of the phase plane, such that the performance index 

.O 

I=$ 
J 

u2dt, (2.3) 
-T 

is minimized over all admissible control functions u(r). 
Pontryagin’s maximum principle method [5] applied to this optimal control 

problem yields the following exact analytical solution representation 

x,(t) = (l/202&4 w7 sin wr + B(sin wr - or cos or)], 

x2(r) = (1/2w)[A(sin w7 + wr cos ws) + Bws sin or], 

u(r) = A cos wr + B sin or, (2.4) 

I=(1/8w)[2wT(A2 +B*)+(A*-B*) sin 2wT-44AB sin'wT], 

where 

A =2w[x,,w’Tsin wT-x2,(wTcoswT- sin wT)]/(w*T* - sin* wT>, 

B=2w2[xZ0Tsin wT+x,,(sin wT+ wTcos wT)]/(w*T* -sin* wT). (2.5) 
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3. THE CHEBYSHEV APPROACH AND ITS RESULTS 

In view of the use of the Chebyshev polynomials T,,(t), which are defined on the 
interval [-1, 11, the transformation r = iT(t - 1) is introduced. The optimal control 
problem may then be restated as follows: Minimize 

subject to 

I& 
J u2 dt, (3.1) -I 

I = ;T’(--w2x + u), ( . = d/dt), (3.2) 

with 

x(-1)=x-,, i(-1)=1-i, x(1)=0, a( 1) = 0. (3.3) 

Let us determine an approximate solution of this optimal control problem 
represented by a Chebyshev series of order m for both the state and the control: 

x,(t) = $a, T,(t) + 2 u, T,(t), 
n=1 

u,(t) = jb, T,(f) + 5 b, T,(t), 
(3.4) 

thus assuming that approximation by polynomials is appropriate. Otherwise, as 
discussed by Dahlquist and Bjorck [ 151 or Fox and Parker [8], preliminary transfor- 
mations of variables or approximation by rational functions must be used. 

The unknown coefficients a - (a,, a, ,..., a,) and /3 = (b,, b, ,..., b,) in Eq. (3.4) 
are determined as follows: First one replaces the original system dynamics (3.2) by 
its approximate version 

Z,(t) = ST2 [-w’x,(t) + urn(t)], (3.5) 

upon which a Chebyshev balance principle is applied, this consisting of equating the 
coefficients of the Chebychev polynomials T,(t) in this equation. Using a well-known 
property for the Chebyshev series [8], one has the following relations between the 
Chebyshev coefficients qn of a continuously differentiable function q(t) and the 
Chebyshev coefficients q; of its second derivative i(t) 

(n + 1) q;-2 - 2nq; + (n - 1) qzt2 - 4n(n2 - 1) qn = 0 (n = 2, 3 ,... ). (3.6) 

According to this property, the application of the Chebyshev balance principle to the 
approximated system dynamics (3.5) yields the m + 1 equations 

(n+l)A,-,-2nA,+(n-l)A,+,-4n(n2-l)u,=O (n=2,3 ,..., m), 
(3.7) 

(n+ l)A,-,-2nA,+(n- l)A,+,=O (n=m+ l,m+2), 
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with A,,,+, = Am+2 = A,,, = Amf4 = 0. The coefftcients A,, are the Chebyshev coef- 
ficients of the right-hand side of Eq. (3.5). 

By the use of the properties T,(-1) = (-1)” and T,(l) = 1, the boundary 
conditions (3.3) are approached by 

;a,+ 2 (-l)“a,-x-,=0, 
tl=l 

$, (-l)n+ln2a,---,=0, 

$2, + i, a, = 0, /f n*a, = 0. 

(3.8) 

n=1 

For the approximation of the performance index characterized by a general 
function g(x, U, t), we consider the expression 

J(a, 8) = j-’ g[x&), u&h tl dt. (3.9) 
--I 

Let 

B,,(a, P) = ;I; (1 - t*)-“* g[x,(O, q&), tl T,(t) dt (3.10) 
I 

represent the Chebyshev coefftcients of g[x,(t), u,(t), t], then according to a well- 
known theorem for the integration of a Chebyshev series [8], one has 

J(u,~) = B&Z, p) - f [ ’ nf2(-:jn ] B,@,P). 
n=2 

(3.11) 

For practical computations, this infinite series is truncated at a certain order m, . 
The optimal control problem is now reduced to a parameter optimization problem 

which is stated as follows: 

Find a and /3 that minimize J(a, ,0) subject to the constraint relations (3.7) 
and (3.8) which may be written as 

F,(a, P) = 0, (v = 1, 2 ,..., m + 5). (3.12) 

By applying the method of constrained extremum which consists of adjoining the 
constraints to the performance index by a set of undetermined Lagrange multipliers 
A”, (v = 1, 2 ,...) m + 5), and expressing the necessary conditions for a stationary value 
of J(a, /?), one obtains the following determining equations for the unknowns a, /?, 
and A: 

-g+n,g-=o. -g + A” 2 = 0, F,,(a, P) = 0 (3.13) 
44 II P II 

(u = 0, l,..., m; v = 1, 2 ,..., m + 5). 
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Sufficient conditions for a local minimum are the stationarity conditions (first and 
second groups of equations in (3.13)) and the convexity condition expressing the 
positive definiteness of a certain matrix [ 161. 

In the case of the controlled oscillator as considered here, the function g is propor- 
tional to u*, and therefore J depends only upon /?. Since the system dynamics is 
described by a linear function in x and u, and the performance index is characterized 
by a quadratic function in u, the determining equations (3.13) are linear in all 
unknowns a, /I, and A, and they are readily solved by any classical method in 
numerical analysis such as Gauss elimination or LU triangular decomposition with 
pivoting. 

The computation of the Chebyshev coefficients B, given in Eq. (3.10) is carried out 
as follows. Putting t = cos 13 and using the property T,(cos 8) = cos n6, the 
Chebyshev coefficients B, (where n = 0, l,..., m,) may be computed by the following 
approximation formulae [ 81 

B, =~ ~ g[X,(COS ei), U,(COS ei), COS ei] COS nBi (n = 0, l,..., m,) 
i-l 

N>m,, Bi = [(2i - 1)/2N] n. (3.14) 

It has been pointed out that the Chebyshev approximation of relatively low order 
m = 4 may be readily obtained in a complete analytical manner. In that case, there 
are nine constraint equations between the ten unknown Chebyshev coefficients. The 
results are reported in the first column of Table I with the following choice of the 
numerical values of the parameters: 

co= 1, T=2, x-,=0.5, i-,=-OS. (3.15) 

The same results were obtained numerically using a CDC CYBER 170/750 computer 
by taking m, = 6 and N = 12. Higher order Chebyshev approximations have then 
been computed and the results for the Chebyshev approximations of order m = 7 and 
m = 10 have been incorporated in Table I. The corresponding values of the 
parameters m, and N which have been chosen are listed, and the computational time 
(TIME) is indicated. 

The Chebyshev coefficients for the exact state function x(t) and the exact control 
strategy u(t) given in Eq. (2.4) have been computed from (3.14) and are listed 
between brackets in the last column in Table I. One of the most important advantages 
of the use of the Chebyshev series representation is that the Chebyshev coefficients 
rapidly decrease. Generally other expansions need more coefficients if the same 
precision is required. As a consequence, the computational time increases 
considerably. By proceeding to the higher order approximations, the results obtained 
by the Chebyshev technique gradually tend to the results for the exact solution 
representation. The Chebyshev approximation of order m = 10 is already a very 
accurate approximation of the exact solution. The largest deviation in the coefficients 
amounts to 1.2 X lo-” and there is an agreement of 14 decimal places for J. 
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TABLE I 

The Chebyshev Approximations for the Controlled Linear Oscillator 

Chebyshev solution 
m=4 

m,=6,N=12 

Chebyshev solution 
m=7 

m, = 10, N= 20 

Chebyshev solution 
m= 10 

m, = 15, N= 30 

4, 
b, 
4 
b, 
b, 
bs 
b, 
b, 
4 
4 
b 10 

J 

TIME 

0.351120 0.35111171 
- 0.250000 -0.24971581 

0.078420 0.07851606 
0.0 - 0.00042883 

- 0.003980 - 0.004 12624 
0.00014634 
0.00005432 

- o.OOOOO170 

0.723762 
- 0.250000 
-0.112618 

0.0 
- 0.003980 

0.72689438 
- 0.24301769 
-0.10911365 

0.01080270 
0.00239238 

- 0.00013927 
0.00005432 

- 0.00000170 

0.184917 

0.32 set 

0.18485854 

0.74 set 

0.35 11116502 (02) 
-0.2497158104 (04) 

0.0785 159994 (94) 
- 0.0004288315 (15) 
- 0.0041265537 (37) 

0.0001463517 (17) 
0.0000550660 (60) 

- O.OOOOO17187 (87) 
- O.OOOOO03380 (80) 

O.OOOOOOOO89 (89) 
0.0000000012 (12) 

0.7268625864 (59) 
- 0.2430166656 (99) 
- 0.1091470156 (61) 

0.0108038104 (059) 
0.0023525641 (36) 

-0.0001379230 (80) 
- 0.0000198888 (94) 

0.0000008358 (297) 
0.0000000903 (895) 

(-) 0.0000000089 (29) 
(-) 0.00000000 12 (02) 

0.1848585424 (24) 

1.8 set 

TABLE II 

Error versus Parameter Variations 

Maximum error 
on a, 

Maximum error 
on b, Error on J 

Standard case 5.3 x lo-” 1.2 x 10-a 2.7 x 10-l’ 
w=2 7.3 x 10-a 1.6 x lo-’ 9.7 x lo-” 
T=3 3.5 x 1o-p 3.4 x 10-7 6.6 x lo-l4 

x-,=l,i-,=-1 1.1 x lo-lo 2.4 x lo-@ 1.1 x lo-l4 
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Table II represents, for various values of the parameters o, T, x-~, and j;- i, the 
maximum error on the Chebyshev coefficients of order m = 10 and on the perfor- 
mance index in comparison with the results obtained from the exact solution 
representation. By increasing the value of some of these parameters, holding the other 
parameters at constant values, it has been found that the Chebyshev approximations 
are less accurate. 

4. THE CONTROLLED DUFFING OSCILLATOR 

Let us now investigate the optimal control of the Dufling oscillator described by 
the nonlinear differential equation 

i+W2X+&X3=U ( ’ = d/d+ (4.1) 

subject to the same boundary conditions as before and taking the same performance 
index expression. Of course, the exact solution in this case is not known. 

By applying the Chebyshev technique introduced in Section 3, the following 
modilicatioris have to be taken into account. The approached system dynamics 
becomes 

GIw =fmb,(t)~ %l(ol ( ’ = d/dt), 

where 

j-(x, u) = +T*(-o*x - &x3 + u), (4.3) 

and in whichf,[x,(t), u,,,(t)] represents the Chebyshev series off[x,(t), u,,,(t)] trun- 
cated after the term of order m. The approached system dynamics, boundary 
conditions, and performance index take the same expressions as Eqs. (3.7), (3.8), and 
(3.1 l), at least formally. The coefficients A, in Eq. (3.7), however, are now nonlinear 
functions in cz and /I, and hence the determining equations (3.13) for the unknowns a, 
/I, and 1 are also nonlinear. Starting with some initial values a, E and & the 
generalized Newton-Raphson iterative method will be applied to solve these 
equations. 

The starting values a and p have been taken from the analytical treatment with 
m = 4 for the controlled linear oscillator (a = 0) which has been discussed previously. 
Starting values for A., (v = 1,2 ,..., m + 5) were obtained by selecting m + 5 equations 
from the first two sets of equations in (3.13). In this way a linear system with respect 
to I, is obtained once initial values for a and /3 are given. 

Table III lists the results for the Chebyshev approximations of order m = 4, 7, and 
10 for the same numerical values of the parameters w, T, x-i , and i-1 as given in 
(3.15) and where, in addition, the coefficient E of the nonlinearity has been taken as 
E = 0.15. The precision on a, /.I, and A imposed in order to stop Newton’s iterative 
method is indicated by PREC, and ITER represents the number of iterations required 
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TABLE III 

The Chebyshev Approximations for the Controlled Duffkg Oscillator 

Chebyshev solution Chebyshev solution Chebyshev solution 
m=4 m=7 m= 10 

m,=6,N=12 m,=lO,N=20 m,=15,N=30 

bo 
b, 
6, 
b, 
6, 
b, 
4 
b, 
4 
b, 
b 10 

J 

PREC 

ITER 

TIME 

0.350240 0.35023304 
-0.250000 -0.24963104 

0.079007 0.07909029 
0.0 -0.00055515 

-0.004127 -0.00425420 
0.00018731 
0.00004739 

-0.OOOOO113 

0.726323 
-0.257098 
- 0.114407 
- 0.002218 
-0.003446 

0.72904647 
-0.24794900 
-0.11134470 

0.01188669 
0.00211863 

-0.00007899 
0.00000900 
0.00001834 

0.187531 0.18744484 0.1874448561 

10-6 10-N 10-‘O 

2 3 3 

0.79 set 1.9 set 4.7 set 

0.3502330049 
-0.2496310664 

0.0790902898 
-0.0005551413 
-0.0042543424 

0.0001872655 
0.0000476871 

-0.0OOOOO9808 
-0.OOOOO01464 
-0.OOOOOO0771 

0.OOOOO00096 

0.7290361297 
-0.2479592161 
-0.1113555543 

0.0118753763 
0.0021059922 

-0.0000924297 
-0.0000173724 
-0.OoOOO37004 

omoOO0745 1 
-0.OOOOOO6837 

0.0000002377 

to attain such precision. Similar conclusions as formulated for the linear case hold 
here. In addition, the effect of the parameter E characterizing the nonlinearity has 
been studied. When E is increased, one has to take a larger value of the order m of the 
Chebyshev approximations in order to obtain the same precision. 
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